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Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems

Indrani Bose and Indranath Chaudhuri
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We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this
purpose, the Gierer-Meinhardt model of pattern formation is considered. The cases we studpadomness
in the underlying lattice structurdiji) the case in which there is a probabilip/that at a lattice site both
reaction and diffusion occur, otherwise there is only diffusion; and finally, the effdat Jodinisotropic andiv)
random diffusion coefficients on the formation of Turing patterns. The general conclusion is that the Turing
mechanism of pattern formation is fairly robust in the presence of randomness and anisotropy.
[S1063-651%97)09705-5

PACS numbd(s): 05.70. Ln

I. INTRODUCTION Turing patterns are not unique to a particular system. Also
the Turing mechanism embodies a general principle of self-
In 1952 Turing[1] pointed out that diffusion need not oOrganization. A well-known model of a RD system in which
always act to smooth out concentration differences in aluring patterns can form is the Gierer-Meinhar@M)
chemical system. Two interacting chemicals can generate ®°d€l[9,10]. In Sec. Il we describe the GM model and study
stable, inhomogeneous pattern if one of the substaftbes the effect of randomness in the structure of the RD system on

inhibitor) diffuses much faster than the othghe activatoy. tdr;feferr):gt?ar\? ;Orlzg?it(')?]g pc;?iﬁiésﬁﬁc}.elFg:ethljsisglrjerzﬁcz)zg tgﬁ a
The activator is autocatalytic, i.e., a small increase in its q

concentratiors. over its homodeneous steadv-state ConCensquare lattice. We further study the situation in which there
. : Vver | mog u Y- is a probabilityp that at a lattice site both reaction and dif-
tration leads to a further increase af The activator pro-

. i . fusion occur, otherwise there is only diffusidoase I). In
motes not only its own production but also the production Ofgec ||| we study the effect of anisotropic and random diffu-
the inhibitor. The inhibitor, as the name implies, is antago-gjy, coefficientscases Il and IV on the formation of Tur-

nistic to the activator and inhibits its production. SUPPOS€ng patterns. All the studies are based on computer simula-
that the system is originally in a homogeneous steady stalgon on a square lattice. Section IV contains a general
A local increase in the activator concentration leads t0 &jiscussion of the models studied.

further increase in the concentration of the activator due to

autocatalysis. The concentration of the inhibitor is also in- || RANDOMNESS IN STRUCTURE AND DYNAMICS
creased locally. The inhibitor, having a diffusion coefficient ) ] ) . )

much larger than that of the activator, diffuses faster to the The differential equations describing RD in the GM
surrounding region and prevents the activator from comingnodel are

there. This process of autocatalysis and long-range inhibition

finally lead to a stationary state consisting of islands of high Ja a?

activator concentration within a region of high inhibitor con- e DaAa+ Pay ™ Had, (13
centration. The islands constitute what is known as the Tur-

ing pattern. Turing’s original idea was that the stable patterns

could be linked to the patterns seen in biological systems. dh )

Experimental evidence of Turing patterns, however, came E:DhAh”LPha — b, (1b)

much later and that too not in biological systems but in

chemical systemf2—4]. This has sparked renewed interestwhere A is the Laplacian given by = 9%/9x?+ %/ dy?, a

in mathematical models of pattern formation as well as theandh denote the concentrations of the activator and the in-

relationship of chemical patterns to the remarkably similarhibitor, D, andD,, are the respective diffusion coefficients,

patterns observed in diverse physical and biological systemg, and w,, are the removal rates, ang, and p,, are the

[5]. Turing structures have also been seen in electrical gasross-reaction coefficients. The conditions for the formation

discharge system$]. Recently, it has been suggested thatof stable Turing patterns af®@,>D, and u,,> u, [10]. We

the formation of stripe patterns on the marine angelfistalso assume thap,=u, and p,=pu,. In this case, the

Pomacanthus can be explained on the basis of the Turingteady-state solution of Eq$la and (1b) is given by

mechanism involving reaction diffusidiRD) [7]. ARD neu-  (a,h)=(1,1), i.e., the steady state is homogeneous. The ho-

ral network model has been proposed based on nonsynaptitogeneous steady state is stable if local fluctuations created

diffusion neurotransmissiof8]. The model has the features in the system decay with time. If the fluctuations grow with

of short-range activation and long-range inhibition, necestime, the original homogeneous state is unstable. A phase

sary ingredients for the formation of Turing patterns. Thediagram (= u,/u, versusD=D,/Dy,), based on the linear

network exhibits similar self-organization behavior. stability analysis of the one-dimensiorfdD) version of the
The diverse examples mentioned above show that th&M model is given in Ref{10]. The phase diagram contains
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a region in which Turing patterns can form. In this parameteisystem for which Turing patterns can form in the steady
regime, instability in the original homogeneous state leadstate. We use the parameter valueB,= 0.005,
finally to a steady state in which Turing patterns of highp,=u,= 0.01,D,,= 0.2, andp,,= u,= 0.02 for our studies.

activator concentration are formed. Appendix B of R&0] As in [10], a very simple discretization scheme is used.
gives the parameter values for a two-dimensio2®)) RD  The LaplacianA applied to the functiom(x,t) is taken as

Aa(xij 't): a(XH_lj ,t)+a(Xij +1,t)+a(x(;)_(21j ,t)+a(Xij _1,t)_4a(Xij ,t) , (2)

wherex;; denotes a lattice site; = (iox,jéx). Time is also i.e., the values ofa and h at all the cluster sites do not

discretizedt,,=kot and the time derivative is approximated change within a specified accuracy.

as We define an “activated” zone as an island of NN sites in
the steady state, at each of which the activator concentration

3) has a value greater than 1, which is the homogeneous steady-

da(x,ty)  a(x,typq) —a(x,ty)

at ot ' state value. Figures(d)—1(d) show the concentration pro-
. . . files in the activated zones for site occupation probabilities
In all our simulations, we chooséx=ét=1. The lattice =09, 0.7, 059, and 0.4, respectively. The value

chosen is of size 3& 30. Also, periodic boundary condi- p=p.=0.59 is the site percolation threshold for a square

tions are assumed. . .
N . : >
We first study the RD process on inhomogeneous su :—2 :::22 ]!; (:rp< Pe tsefg?gi(gesd ;1::]\;\:10“2'3;2;@?: slgans the
strata(case ). In our case these are the 2D percolation clus- ’ P=Pe, p 9 - PP P,

ters, with site occupation probability, on which the activator the percglation clusters inc;lude both the spanning gluster as
and inhibitor react and diffuse. The percolation clusters ar‘é(eII as isolated clgsters in other pgrts of the Iatt|_ce. For
generated in the usual manner with the help of a randor@ <Pc. the percolation clusters consist of only the isolated

number generator. If the random number is less than or equ&lUSters: , _
to p, the site of the lattice is occupied: otherwise it is kept '€ figures show that the number of activated zones in-

empty. All the sites of the square lattice are examined succ'€ases ap decreases. This trend continues below the per-

cessively and the occupation status of a site is determineﬂolaﬁon threshold. Also, the average height of the concentra-
with the help of the random number generator. The neareston peaks decreases. These results can be understood in the

neighbour(NN) occupied sites constitute a percolation clus-Tollowing manner. With lesser connections in the RD net-
ter. work, asp decreases, the inhibitor cannot diffuse to long

The differential equationéla) and (1b) are discretized distances and so cannot prevent activator growth in the local
according to the schemes specified in E@.and (3). The regions. Thus, in the steady state there is a larger number of

Laplacian in Eq(2) is now written as activated _zones. The average height of _acti\(gtor-
concentration profiles decreases because of the inability of
Aa(xjj ) =ocdi+ L j)[alXi 1), 1) —alxij,t)] the inhibitor to totally diffuse away from the activator zone.
The greater concentration of inhibitor in this zone limits the
+Zocd i) HD)[a(Xi) 1, —a(Xij 0] growth of the activator concentration more than in the case

e - of a regular RD network.

ooedi =LA -1, ) —a0X;,D)] We %ext consider case . In this case, the RD network is

+oedl ]~ Dla(xj—1,H) —alx; )], (4) a fully connected square lattice. Lptbe the probability that

both reaction and diffusion occur at a site. The other possi-

The array. .. keeps track of the occupation status of thebility, with probability 1—p, is ordinary diffusion. When
sites of the square lattice. If the sitg is occupied then p=1, i.e., there is no randomness in the dynamics, Turing
Zocdi,j) =1; otherwise it is equal to zero. Equatiof) ex-  patterns form in the steady state. When 0, i.e., there is no
presses the fact that diffusion to a site from a neighboringeaction, simple diffusion takes over. The steady state in this
site takes place only if the neighboring site belongs to thecase is homogeneous with all concentration gradients re-
RD network, i.e., to a percolation cluster. One can easilynoved. Figures @)—2(d) show the steady-state patterns for
check that the discretized differential equatiofwith p=0.01, 0.05, 0.3, and 0.7. Fpr=0.005, the steady state is
pa= Ma and p,= ) have a steady-state solution given by homogeneous. Thus, f@ as small as 0.01, i.e., when RD
a=1 andh=1 for all the cluster sites. Random fluctuations occurs at only 1% of the lattice sites, a Turing pattern is
of magnitude less than 0.1 are created in the steady state witbrmed. In this case, there is only one activated zone that
the help of the random number generator. This fixes the valeovers a large area. As increases, the number of activated
ues ofa andh at all the cluster sites at tinte=0. The values zones increases. For small valuesppfive have checked that
of a andh at timet+ 1 are determined at a sitg belonging an activated zone need not be centered around a cluster of
to a cluster with the help of the discrete equationsd@nd NN sites at which RD occurs; a zone may form in the inter-
h. This process is repeated until the steady state is reachedhediate region of two such clusters. In light of this fact, it is
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FIG. 1. Concentration profiles of the activator on a disordered lattice structure for site occuption probé#jilitie®.9, (b) p=0.7, (c)
p=0.59, and(d) p=0.4 (case }. The islands of high activator concentration constitute the Turing pattern.

interesting to note that even with very few RD sites, the3(c) shows the usual Turing pattern consisting of islands.
Turing mechanism is operative. Thus, with an appropriate choice of diffusion coefficients,
one may generate different types of Turing patterns.

Case IV considers the situation of random diffusion coef-
ficients. The diffusion coefficierd;; for diffusion between a
pair of sites is chosen from a binary distribution. The diffu-

Anisotropy in the RD medium is reflected in the anisot- Sion coefficients for the activator and the inhibitor are 0.005
ropy of the diffusion coefficients. Merteret al. [11] have  and 0.2, respectively with a probabilify. The diffusion co-
studied the effect of anisotropic diffusion coefficients on pat-efficients have equal values, 0.005, with probability (1.
tern formation in catalytic surface reactions. Their conclu-The diffusion term is now discretized as
sion is that anisotropy may give rise to new types of patterns.

In our case lll, we assume that for diffusion in the vertical

direction, the diffusion coefficients_ aré)a:_0.00S and D.,Aa=> D, [a(j,t)—a(k,)], (5)
D,,=0.2. These are the values for which Turing patterns can ] Ik

form in an isotropic medium. For diffusion in the horizontal

direction, the diffusion coefficient®,; and Dy; may have ) ) )

different values. Figures(8—3(c) show the steady-state pat- Wherek denotes the lattice sitg; andj denotes the four NN
terns for the cases(i) D, =0.005,D;;=0.01, (i) sites. When all tthajk’s are equal td,, the original dis-
D,;=0.2, D;,;=0.005; and(iii) D,;=0.008,D,;=0.2. In  cretization is recovered. Figurega#-4(c) show the steady-
the first two cases, the stationary pattern has a wave-likstate patterns fop=0.5,0.3, and 0.2, respectively. In Fig.
appearance. This Turing pattern is different from the oned(a) the Turing activator-concentration peaks are above the
consisting of islands that we have been considering so fasteady-state value of 1. Figuréb} shows that Turing pat-
For a 1D RD system, the values of diffusion coefficientsterns are still formed, but the peaks are above or below the
given in(i) and(ii) correspond to the situation when the final value 2. This implies that there is an overall activation at all
steady state is homogenedu$). This fact is reflected in the the lattice sites. This is an interesting feature of the model
patterns seen in Figs(® and 3b); the distribution of the considered. Figure(4) shows that ap=0.2, the steady state
activator concentration is homogeneous in the horizontal diis homogeneous but has a higher concentratigh)( = (2,2
rection. In the third case, the diffusion coefficients are suchhan in the original steady state for which,f) = (1,1). The
that Turing patterns are formed in the steady state. Figur&ansition from a steady state with Turing patterns to a new

Ill. ANISOTROPY AND RANDOMNESS
IN DIFFUSION COEFFICIENTS
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FIG. 2. Turing patternsg denotes the activator concentratidar (a) p=0.01,(b) p=0.05,(c) p=0.3, and(d) p=0.7 (case 1), where
p is the probability that at a lattice site both reaction and diffusion occur and & the probability that there is only diffusion. The size
of the lattice is 30x 30.

homogeneous steady state is analogous to a dynamical phasetwork is connected to all the other elements. For random
transition and occurs at a value pfin betweenp=0.2 and  connectivity, the Jacobian matrix has random elements. For
p=0.3. such a Jacobian matrix of zero mean, the Wigner-May theo-
rem[12,13 states that the dynamical system is almost surely
IV. DISCUSSION unstable if the connectivity exceeds a threshold. Raghava-

chari and Glazief14] have considered 1D coupled map lat-

In case | we have studied pattern formation in a squargices with a scaling form of connectivity. Each pair of sites
network with missing connections. In chemical RD systems andj is connected with the probability

that exhibit Turing patterns, the RD process takes place in a
gel that consists of an irregularly connected network of pores 1
of various diameters through which the molecules diffuse. Pij=—=—=,
RD processes in the brain also occur in an irregular network. Iri=r;l
The present study shows that disorder in the underlying net- . .
work has no adverse effect on the formation of Turing patwherer; andr; are the coordinates of the¢h andjth sites,
terns. This is because the length scales involved in the RDespectively. The NN coupling limit corresponds d6—
process are small. and a—0 is the global coupling limit. For this model, the
In our model we have considered random NN connectivdJacobian matrix has all non-negative elements and is un-
ity. In a more general context, when further-neighbor con-stable for low values of connectivity but is stable when con-
nections are also present, an interesting problem to study igectivity exceeds a critical value. In light of these studies, it
the effect of network connectivity on the stability of the dy- is of interest to include further-neighbor connections in the
namical system. When small perturbations are applied to smodel studied in case | and study the effect of the richer
steady state, the stability of this state may be studied bgonnectivity on the formation of Turing patterns. For this
linear stability analysis, i.e., by Taylor expanding in the purpose, a discretization scheme involving an extended
neighborhood of the steady state. Only the first two terms imeighborhood can be used. Further-neighbor connectivity
the expansion are kept; the second term contains the derivasay be important in neural networks in which RD processes
tive or Jacobian matrix. The original steady state is stabl@re responsible for self-organization in the neural activity
only if all the eigenvalues of the Jacobian matrix have negaf8].
tive real parts. Consider a randomly assembled dynamical In case Il the model studied involves random dynamics. A
network. Full connectedness implies that an element of thgossible realization of this situation is as follows. Autoca-

j=+1,2,3,..., (6)
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FIG. 4. Steady-state pattern for random diffusion coefficients
(case V. The diffusion coefficients of the activator and inhibitor
are 0.005 and 0.2, respectively, with a probabiptyThe diffusion
FIG. 3. Steady-state patterns in the case of anisotropic diffusioggefficients have equal values, 0.005, with probability-(). The

coefficients(case II). For diffusion in the vertical direction, the ygjyes ofp that have been considered &g p=0.5, (b) p=0.3,
diffusion coefficients of the activator and inhibitor dbg= 0.005  and(c) p=0.2.

andD,,= 0.2. For diffusion in the horizontal direction, the diffusion
coefficients of the activator and inhibitor are(a)
D, = 0.005D;= 0.01; (b) D4 = 0.2D,;= 0.005; and (c)
D, = 0.008D,;= 0.2.

the substance. Normally, the diffusivities are inversely pro-
portional to the square roots of the molecular weights. How-
ever, in a porous medium with tortuous geometry, the diffu-
sion coefficients may be space dependent. The pores of the
talysis of the activator may require the presence of a chemieell walls in a biological system restrict the movement of
cal molecule or some triggering mechanism not available alarge molecules in addition to the restriction imposed by
all the lattice sites. The chemical molecule in question can b¢heir weights and most of them are unable to pass through
static with zero diffusion coefficient because of a large sizethe walls of the cell. In aqueous solution, the activator and
The situation is hypothetical, but not unrealistic. inhibitor molecules may have the same diffusion coeffi-
In cases Ill and IV we have studied models with aniso-cients, but if the RD system is embedded in a gel as in the
tropic and random diffusion coefficients. In ordinary diffu- experimentq2,4] to observe Turing patterns, the activator
sion, molecules move from regions of greater to regions ofnolecules being larger in size are effectively trapped. This
lesser concentration at a rate proportional to the gradient girovides a big difference in diffusion coefficients of activator
the concentration and also proportional to the diffusivity ofand inhibitor. In these examples, the diffusion coefficient is
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determined by the geometrical structure of the RD mediumthe Turing mechanism of pattern formation is fairly robust in
In a porous medium with pore sizes distributed over a rangethe presence of randomness and anisotropy.
the diffusion coefficient may very well be space dependent.
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