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Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems

Indrani Bose and Indranath Chaudhuri
Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Calcutta 700 009, India

~Received 21 November 1996!

We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this
purpose, the Gierer-Meinhardt model of pattern formation is considered. The cases we study are~i! randomness
in the underlying lattice structure;~ii ! the case in which there is a probabilityp that at a lattice site both
reaction and diffusion occur, otherwise there is only diffusion; and finally, the effect of~iii ! anisotropic and~iv!
random diffusion coefficients on the formation of Turing patterns. The general conclusion is that the Turing
mechanism of pattern formation is fairly robust in the presence of randomness and anisotropy.
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I. INTRODUCTION

In 1952 Turing @1# pointed out that diffusion need no
always act to smooth out concentration differences in
chemical system. Two interacting chemicals can genera
stable, inhomogeneous pattern if one of the substances~the
inhibitor! diffuses much faster than the other~the activator!.
The activator is autocatalytic, i.e., a small increase in
concentrationa over its homogeneous steady-state conc
tration leads to a further increase ofa. The activator pro-
motes not only its own production but also the production
the inhibitor. The inhibitor, as the name implies, is antag
nistic to the activator and inhibits its production. Suppo
that the system is originally in a homogeneous steady s
A local increase in the activator concentration leads to
further increase in the concentration of the activator due
autocatalysis. The concentration of the inhibitor is also
creased locally. The inhibitor, having a diffusion coefficie
much larger than that of the activator, diffuses faster to
surrounding region and prevents the activator from com
there. This process of autocatalysis and long-range inhibi
finally lead to a stationary state consisting of islands of h
activator concentration within a region of high inhibitor co
centration. The islands constitute what is known as the T
ing pattern. Turing’s original idea was that the stable patte
could be linked to the patterns seen in biological syste
Experimental evidence of Turing patterns, however, ca
much later and that too not in biological systems but
chemical systems@2–4#. This has sparked renewed intere
in mathematical models of pattern formation as well as
relationship of chemical patterns to the remarkably sim
patterns observed in diverse physical and biological syst
@5#. Turing structures have also been seen in electrical
discharge systems@6#. Recently, it has been suggested th
the formation of stripe patterns on the marine angelfi
Pomacanthus can be explained on the basis of the Tu
mechanism involving reaction diffusion~RD! @7#. A RD neu-
ral network model has been proposed based on nonsyn
diffusion neurotransmission@8#. The model has the feature
of short-range activation and long-range inhibition, nec
sary ingredients for the formation of Turing patterns. T
network exhibits similar self-organization behavior.

The diverse examples mentioned above show that
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Turing patterns are not unique to a particular system. A
the Turing mechanism embodies a general principle of s
organization. A well-known model of a RD system in whic
Turing patterns can form is the Gierer-Meinhardt~GM!
model@9,10#. In Sec. II we describe the GM model and stu
the effect of randomness in the structure of the RD system
the pattern formation process~case I!. For this purpose the
differential equations of the model are discretized on
square lattice. We further study the situation in which the
is a probabilityp that at a lattice site both reaction and d
fusion occur, otherwise there is only diffusion~case II!. In
Sec. III we study the effect of anisotropic and random diff
sion coefficients~cases III and IV! on the formation of Tur-
ing patterns. All the studies are based on computer sim
tion on a square lattice. Section IV contains a gene
discussion of the models studied.

II. RANDOMNESS IN STRUCTURE AND DYNAMICS

The differential equations describing RD in the G
model are

]a

]t
5DaDa1ra

a2

h
2maa, ~1a!

]h

]t
5DhDh1rha

22mhh, ~1b!

whereD is the Laplacian given byD5]2/]x21]2/]y2, a
andh denote the concentrations of the activator and the
hibitor, Da andDh are the respective diffusion coefficient
ma and mh are the removal rates, andra and rh are the
cross-reaction coefficients. The conditions for the format
of stable Turing patterns areDh@Da andmh.ma @10#. We
also assume thatra5ma and rh5mh . In this case, the
steady-state solution of Eqs.~1a! and ~1b! is given by
(a,h)5(1,1), i.e., the steady state is homogeneous. The
mogeneous steady state is stable if local fluctuations cre
in the system decay with time. If the fluctuations grow wi
time, the original homogeneous state is unstable. A ph
diagram (m5mh /ma versusD5Da /Dh), based on the linea
stability analysis of the one-dimensional~1D! version of the
GM model is given in Ref.@10#. The phase diagram contain
5291 © 1997 The American Physical Society
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5292 55INDRANI BOSE AND INDRANATH CHAUDHURI
a region in which Turing patterns can form. In this parame
regime, instability in the original homogeneous state le
finally to a steady state in which Turing patterns of hi
activator concentration are formed. Appendix B of Ref.@10#
gives the parameter values for a two-dimensional~2D! RD
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system for which Turing patterns can form in the stea
state. We use the parameter valuesDa5 0.005,
ra5ma5 0.01,Dh5 0.2, andrh5mh5 0.02 for our studies.

As in @10#, a very simple discretization scheme is use
The LaplacianD applied to the functiona(x,t) is taken as
Da~xi j ,t !5
a~xi11 j ,t !1a~xi j11 ,t !1a~xi21 j ,t !1a~xi j21 ,t !24a~xi j ,t !

dx2
, ~2!
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wherexi j denotes a lattice sitexi j5( idx, jdx). Time is also
discretizedtk5kdt and the time derivative is approximate
as

]a~x,tk!

]t
5
a~x,tk11!2a~x,tk!

dt
. ~3!

In all our simulations, we choosedx5dt51. The lattice
chosen is of size 303 30. Also, periodic boundary condi
tions are assumed.

We first study the RD process on inhomogeneous s
strata~case I!. In our case these are the 2D percolation cl
ters, with site occupation probabilityp, on which the activato
and inhibitor react and diffuse. The percolation clusters
generated in the usual manner with the help of a rand
number generator. If the random number is less than or e
to p, the site of the lattice is occupied; otherwise it is ke
empty. All the sites of the square lattice are examined s
cessively and the occupation status of a site is determ
with the help of the random number generator. The near
neighbour~NN! occupied sites constitute a percolation clu
ter.

The differential equations~1a! and ~1b! are discretized
according to the schemes specified in Eqs.~2! and ~3!. The
Laplacian in Eq.~2! is now written as

Da~xi j ,t !5i occ~ i11,j !@a~xi11 j ,t !2a~xi j ,t !#

1i occ~ i , j11!@a~xi j11 ,t !2a~xi j ,t !#

1i occ~ i21,j !@a~xi21 j ,t !2a~xi j ,t !#

1i occ~ i , j21!@a~xi j21 ,t !2a~xi j ,t !#. ~4!

The arrayi occ keeps track of the occupation status of t
sites of the square lattice. If the sitexi j is occupied then
i occ( i , j )51; otherwise it is equal to zero. Equation~4! ex-
presses the fact that diffusion to a site from a neighbor
site takes place only if the neighboring site belongs to
RD network, i.e., to a percolation cluster. One can ea
check that the discretized differential equations~with
ra5ma and rh5mh) have a steady-state solution given
a51 andh51 for all the cluster sites. Random fluctuatio
of magnitude less than 0.1 are created in the steady state
the help of the random number generator. This fixes the
ues ofa andh at all the cluster sites at timet50. The values
of a andh at timet11 are determined at a sitexi j belonging
to a cluster with the help of the discrete equations fora and
h. This process is repeated until the steady state is reac
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i.e., the values ofa and h at all the cluster sites do no
change within a specified accuracy.

We define an ‘‘activated’’ zone as an island of NN sites
the steady state, at each of which the activator concentra
has a value greater than 1, which is the homogeneous ste
state value. Figures 1~a!–1~d! show the concentration pro
files in the activated zones for site occupation probabilit
p50.9, 0.7, 0.59, and 0.4, respectively. The val
p5pc50.59 is the site percolation threshold for a squa
lattice; Forp.pc , a connected network of sites spans t
lattice, for p,pc , there is no spanning cluster. Forp.pc ,
the percolation clusters include both the spanning cluste
well as isolated clusters in other parts of the lattice. F
p,pc , the percolation clusters consist of only the isolat
clusters.

The figures show that the number of activated zones
creases asp decreases. This trend continues below the p
colation threshold. Also, the average height of the concen
tion peaks decreases. These results can be understood
following manner. With lesser connections in the RD n
work, as p decreases, the inhibitor cannot diffuse to lo
distances and so cannot prevent activator growth in the lo
regions. Thus, in the steady state there is a larger numbe
activated zones. The average height of activat
concentration profiles decreases because of the inabilit
the inhibitor to totally diffuse away from the activator zon
The greater concentration of inhibitor in this zone limits t
growth of the activator concentration more than in the c
of a regular RD network.

We next consider case II. In this case, the RD network
a fully connected square lattice. Letp be the probability tha
both reaction and diffusion occur at a site. The other po
bility, with probability 12p, is ordinary diffusion. When
p51, i.e., there is no randomness in the dynamics, Tur
patterns form in the steady state. Whenp50, i.e., there is no
reaction, simple diffusion takes over. The steady state in
case is homogeneous with all concentration gradients
moved. Figures 2~a!–2~d! show the steady-state patterns f
p50.01, 0.05, 0.3, and 0.7. Forp50.005, the steady state i
homogeneous. Thus, forp as small as 0.01, i.e., when RD
occurs at only 1% of the lattice sites, a Turing pattern
formed. In this case, there is only one activated zone
covers a large area. Asp increases, the number of activa
zones increases. For small values ofp, we have checked th
an activated zone need not be centered around a clust
NN sites at which RD occurs; a zone may form in the int
mediate region of two such clusters. In light of this fact, it
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FIG. 1. Concentration profiles of the activator on a disordered lattice structure for site occuption probabilities~a! p50.9, ~b! p50.7, ~c!
p50.59, and~d! p50.4 ~case I!. The islands of high activator concentration constitute the Turing pattern.
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interesting to note that even with very few RD sites, t
Turing mechanism is operative.

III. ANISOTROPY AND RANDOMNESS
IN DIFFUSION COEFFICIENTS

Anisotropy in the RD medium is reflected in the aniso
ropy of the diffusion coefficients. Mertenset al. @11# have
studied the effect of anisotropic diffusion coefficients on p
tern formation in catalytic surface reactions. Their conc
sion is that anisotropy may give rise to new types of patte
In our case III, we assume that for diffusion in the vertic
direction, the diffusion coefficients areDa50.005 and
Dh50.2. These are the values for which Turing patterns
form in an isotropic medium. For diffusion in the horizont
direction, the diffusion coefficientsDa1 andDh1 may have
different values. Figures 3~a!–3~c! show the steady-state pa
terns for the cases~i! Da150.005,Dh150.01, ~ii !
Da150.2, Dh150.005; and~iii ! Da150.008,Dh150.2. In
the first two cases, the stationary pattern has a wave-
appearance. This Turing pattern is different from the o
consisting of islands that we have been considering so
For a 1D RD system, the values of diffusion coefficien
given in~i! and~ii ! correspond to the situation when the fin
steady state is homogeneous@10#. This fact is reflected in the
patterns seen in Figs. 3~a! and 3~b!; the distribution of the
activator concentration is homogeneous in the horizontal
rection. In the third case, the diffusion coefficients are su
that Turing patterns are formed in the steady state. Fig
-
-
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e
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h
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3~c! shows the usual Turing pattern consisting of islan
Thus, with an appropriate choice of diffusion coefficien
one may generate different types of Turing patterns.

Case IV considers the situation of random diffusion co
ficients. The diffusion coefficientDi j for diffusion between a
pair of sites is chosen from a binary distribution. The diff
sion coefficients for the activator and the inhibitor are 0.0
and 0.2, respectively with a probabilityp. The diffusion co-
efficients have equal values, 0.005, with probability 12p.
The diffusion term is now discretized as

Dana5(
j
Dajk

@a~ j ,t !2a~k,t !#, ~5!

wherek denotes the lattice sitexi j and j denotes the four NN
sites. When all theDajk

’s are equal toDa , the original dis-
cretization is recovered. Figures 4~a!–4~c! show the steady-
state patterns forp50.5,0.3, and 0.2, respectively. In Fig
4~a! the Turing activator-concentration peaks are above
steady-state value of 1. Figure 4~b! shows that Turing pat-
terns are still formed, but the peaks are above or below
value 2. This implies that there is an overall activation at
the lattice sites. This is an interesting feature of the mo
considered. Figure 4~c! shows that atp50.2, the steady state
is homogeneous but has a higher concentration (a,h) 5 ~2,2!
than in the original steady state for which (a,h) 5 ~1,1!. The
transition from a steady state with Turing patterns to a n



e

5294 55INDRANI BOSE AND INDRANATH CHAUDHURI
FIG. 2. Turing patterns (a denotes the activator concentration! for ~a! p50.01,~b! p50.05,~c! p50.3, and~d! p50.7 ~case II!, where
p is the probability that at a lattice site both reaction and diffusion occur and 12p is the probability that there is only diffusion. The siz
of the lattice is 303 30.
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homogeneous steady state is analogous to a dynamical p
transition and occurs at a value ofp in betweenp50.2 and
p50.3.

IV. DISCUSSION

In case I we have studied pattern formation in a squ
network with missing connections. In chemical RD syste
that exhibit Turing patterns, the RD process takes place
gel that consists of an irregularly connected network of po
of various diameters through which the molecules diffu
RD processes in the brain also occur in an irregular netw
The present study shows that disorder in the underlying
work has no adverse effect on the formation of Turing p
terns. This is because the length scales involved in the
process are small.

In our model we have considered random NN connec
ity. In a more general context, when further-neighbor co
nections are also present, an interesting problem to stud
the effect of network connectivity on the stability of the d
namical system. When small perturbations are applied
steady state, the stability of this state may be studied
linear stability analysis, i.e., by Taylor expanding in t
neighborhood of the steady state. Only the first two term
the expansion are kept; the second term contains the de
tive or Jacobian matrix. The original steady state is sta
only if all the eigenvalues of the Jacobian matrix have ne
tive real parts. Consider a randomly assembled dynam
network. Full connectedness implies that an element of
ase
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network is connected to all the other elements. For rand
connectivity, the Jacobian matrix has random elements.
such a Jacobian matrix of zero mean, the Wigner-May th
rem @12,13# states that the dynamical system is almost sur
unstable if the connectivity exceeds a threshold. Ragha
chari and Glazier@14# have considered 1D coupled map la
tices with a scaling form of connectivity. Each pair of sit
i and j is connected with the probability

pi j5
1

urW i2rW j ua
, j561, 2, 3, . . . , ~6!

whererW i and rW j are the coordinates of thei th and j th sites,
respectively. The NN coupling limit corresponds toa→`
anda→0 is the global coupling limit. For this model, th
Jacobian matrix has all non-negative elements and is
stable for low values of connectivity but is stable when co
nectivity exceeds a critical value. In light of these studies
is of interest to include further-neighbor connections in t
model studied in case I and study the effect of the ric
connectivity on the formation of Turing patterns. For th
purpose, a discretization scheme involving an exten
neighborhood can be used. Further-neighbor connecti
may be important in neural networks in which RD proces
are responsible for self-organization in the neural activ
@8#.

In case II the model studied involves random dynamics
possible realization of this situation is as follows. Autoc
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55 5295EFFECT OF RANDOMNESS AND ANISOTROPY ON . . .
talysis of the activator may require the presence of a che
cal molecule or some triggering mechanism not available
all the lattice sites. The chemical molecule in question can
static with zero diffusion coefficient because of a large si
The situation is hypothetical, but not unrealistic.

In cases III and IV we have studied models with anis
tropic and random diffusion coefficients. In ordinary diffu
sion, molecules move from regions of greater to regions
lesser concentration at a rate proportional to the gradien
the concentration and also proportional to the diffusivity

FIG. 3. Steady-state patterns in the case of anisotropic diffu
coefficients~case III!. For diffusion in the vertical direction, the
diffusion coefficients of the activator and inhibitor areDa5 0.005
andDh5 0.2. For diffusion in the horizontal direction, the diffusio
coefficients of the activator and inhibitor are~a!
Da15 0.005,Dh15 0.01; ~b! Da15 0.2,Dh15 0.005; and ~c!
Da15 0.008,Dh15 0.2.
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of
f

the substance. Normally, the diffusivities are inversely p
portional to the square roots of the molecular weights. Ho
ever, in a porous medium with tortuous geometry, the dif
sion coefficients may be space dependent. The pores o
cell walls in a biological system restrict the movement
large molecules in addition to the restriction imposed
their weights and most of them are unable to pass thro
the walls of the cell. In aqueous solution, the activator a
inhibitor molecules may have the same diffusion coe
cients, but if the RD system is embedded in a gel as in
experiments@2,4# to observe Turing patterns, the activat
molecules being larger in size are effectively trapped. T
provides a big difference in diffusion coefficients of activat
and inhibitor. In these examples, the diffusion coefficient

n

FIG. 4. Steady-state pattern for random diffusion coefficie
~case IV!. The diffusion coefficients of the activator and inhibito
are 0.005 and 0.2, respectively, with a probabilityp. The diffusion
coefficients have equal values, 0.005, with probability (12p). The
values ofp that have been considered are~a! p50.5, ~b! p50.3,
and ~c! p50.2.



m
g
n
ys
re
r w
y
as
th

in

m-
fic
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determined by the geometrical structure of the RD mediu
In a porous medium with pore sizes distributed over a ran
the diffusion coefficient may very well be space depende

Recent experimental evidence of Turing patterns in ph
cal, chemical, and biological systems has given rise to
newed interest in the study of these patterns. In this pape
have considered the effect of randomness and anisotrop
the pattern formation process. The studies have been b
on computer simulation and the results obtained show
hy
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the Turing mechanism of pattern formation is fairly robust
the presence of randomness and anisotropy.
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